
13th November 2020

Principle foundations
of Radix.

Dan Hughes CTO

2

Where the journey started ...

Understand Bitcoin and it’s novel solution to the Byzantine Generals problem
using Proof of Work and the strongest chain rule.

I’m an engineer and I like to break things.

What did I find?

¤ Scalability issues across compute, communication and storage
¤ Mining centralization overtime and general inefficiency
¤ Long term market volatility

3

Leaving Blockchain behind

Focus primarily on scalability issues, with stretch goal of improving efficiency
of security model

¤ Blocktrees & DAG (2013) - Allowed multiple compute and consensus
instances. Unable to transact outside of branch.

¤ CAST (2015) - First sharding model. Separation of data from state.
Semi-stateless validators.

¤ Tempo (2017) - Improved sharding model. Asynchronous voting via
logical clocks & state commitments. Achieved 1M transactions per
second.

¤ Cerberus (2020) - Further improved sharding model. Synchronous
voting via multi-decree BFT. Cross-shard atomicity.

4

Cerberus

A culmination of all previous iterations and research over the past number of years,
Cerberus exceeds the initial criteria that was set at the start of our journey.

It delivers highly scalable and responsive permissionless networks, without sacrificing
security or decentralization and provides strong guarantees on liveness and safety.

Further desirable features of the technology are composability of complex actions
which can be executed and committed atomically.

Technical content on Cerberus consensus theory can be found at
https://arxiv.org/abs/2008.04450 and https://radixdlt.com for other content relating
to topics in this presentation.

https://arxiv.org/abs/2008.04450
https://radixdlt.com

5

Data Model

Client actions are
represented by primitives
called Atoms.

Atoms contain one or more
primitives called Particles
that carry state and
execution instructions.

Particles have a “spin”
property representing it’s
lifecycle.

UP/DOWN spin are akin to
constructor and destructor
of that state.

Non-existent particles
implicity carry a NEUTRAL
state.

The state model is heavily
inspired by Bitcoin’s UTXO.

A UTXO style state model
provides efficient sharding
capability almost out of the
box.

6

Data Model

7

Sharding Model

Fixed addressable shard
space of 2^256 shards.

Shards contain consensus
output and state
information for it’s particle.

Particles map to shards via
their (atom||particle)
hash.

Validators are assigned to
validator sets who are
responsible for a group of
shards.

Validator sets are churned
every epoch.

A ‘root’ shard stores all
registered validator
information.

Particle and state
information lookups are
efficient. The validator sets
of the current epoch act as
a map into shard space.

8

Consensus Model

Two consensus domains,
state and ledger.

State consensus is
performed by a validator
set upon a particular state.

Ledger consensus is
performed by all validator
sets for a particular atom.

State domain consensus is
largely agnostic but must
be able to produce a
quorum certificate.

We are using 3-phase
Hotstuff as our state
consensus.

All validator sets must
agree with 2f+1 validators
in all phases to commit.

Any validator set can
disagree with 2f+1
validators in any phase to
abort.

9

Consensus Model - Example protocol

10

Sybil Model

Proof of Stake based Sybil
prevention.

A validator vote is weighted
by the amount of stake
controlled by it.

f represents quantity of
faulty stake.

Acquisition of more stake
requires buying from open
market.

Large market buys will
trend price upwards,
making subsequent
purchases more expensive.

Generation of validator
sets is seeded by stake
activity in the previous
epoch.

Validator sets are “load
balanced” to prevent single
/ colluding validators from
controlling the set.

11

De-Fi, UX and Atomicity

Blockchain and distributed ledger applications are becoming much more
complicated, De-Fi especially.

There is a need to “touch” many points of information when executing an
action, which in turn may also alter the state of those dependencies.

Atomic cross-shard commit is not just a nice feature, it is a must have feature.
¤ Better user experience
¤ Better developer experience
¤ DAPP code is simpler = more secure
¤ More efficient

12

Non-atomic holiday

Book flight
(Shard 1)

Commit
Reserve

hotel
(Shard 2)

Commit
Hire car

(Shard 3)
Commit

¤ Actions must be completed sequentially.
¤ Failure of an action requires the undoing of the previous

¤ The undo commit may also fail
¤ Some use cases may require a manual process

¤ Which action do I perform first?

LedgerState

13

Atomic holiday

Commit
/ Abort

Reserve
hotel

(Shard 2)

Commit
/ Abort

Hire car
(Shard 3)

Commit
/ Abort

Actions undergo state consensus in their
respective shards.

The output of the state consensus determine
whether the set of actions is “committed” to the
ledger.

¤ Actions are executed in parallel.
¤ Failure of any action aborts the commit.

¤ There is nothing to undo.

Book flight
(Shard 1)

Commit
/ Abort

Thank you for listening.

Questions?

